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Minimum Time Attitude Slewing
Maneuvers of a Rigid Spacecraft®

by

Feiyue Li** and Peter M. Bainum***

Howard University
ABSTRACT
The problems of large—-angle attitude maneuvers of a
spacecraft have gained much consideration in recent years (1-81],
In these papers, the configuratiohs of the spacecraft considered
are: (1) completely rigid, (2) s combination of rigid and flexi-
ble parts, or (3) éyrostat-type systems. The performance indices
usualiy include minimum torque integration, power criterion, and
frequency~shaped cost functionals, etc. Also some of these
papers used feedback countrol techniques. In this paper, we try
to concentrate on the‘niuimum.tiﬁe slewing problem of a iigid

spacecraft, i.e., minimizing the total slewing time period

e

tg = [, dt | (1)

The control torques have their upper and lower limits, respec-
tively

ujmin i uj i ujm 5-1,2,00.n . (2)
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In Ref. [2], the author studied the rapid torque-limited slewing
of SCOLE about a single axis (x-axis) about which the spacecraft
has a small moment of inertia. The control torque about this
axis is of a bang-bang type or a bang-pause-bang type. The
author computed the slewing motion omn the simplified model of the
rigidized SCOLB[II; then worked on the practical rigidized model
(with nonzero products of inertia); hence, this leads to a large
error of the attitude after the slewing. Also it seems that no
details were given for the comtrols about the other two axes
(y,2).

'In the present paper, we apply optimal control theory
(Maximum Principle) to the slewing motion of a general rigid
spacecraft (igclude the rigidized SCOLE, without simplification).
The slewing motionvneed not be restricted to a single-axis
sle;ing} The attitude error after the slewing can be made‘aa
small as required. Control torques about all three axes are
computed.

Generally speaking, minimization of tg under the constraints
(2) will result in a ggzgg}{géwggg_ggin§ bouqﬁary value -problem
in whic§ several controls (at least ome) will reach their bounds
during the slewing time, tg. P;rticularly, if one considers the
case of minimum time rotation of a rigid spacecraft ahout one of
its principal'axés of inertia, the control torque about this axis
is of a bang-bang type, while other torques remain zero. On the

other hand, if the slewing motion is not about a single principal

.axis, none of the controls remain zero, but we can reason that at



>

least one of the control inputs reaches its bounds (saturation
level) during the period, tg, in order to minimize it:

To handle the problem in which so;e controls reach their
bounds and others do not, we introduce an additioﬁal cost

function
1 T : :
1= 3 s u‘Rudt (3)

where u is the control vector, T denotes the transpose of a
vector, and R is a proper weighting function matrix. From RefQ.
(3] and (8] we canvoee that, if we use only (3) as.a criterion,
and the tg is loug enough, the control torques are approximateiy
linear functions of time, and the controls will not reach their
saturation levels. But if we shorten tg for our purpose, some of
the contraols must reach their bounds in order to contribute more
effort to~the s1ewihg. By confinuing the shortening of tg, we

can get a particular value, t¥, during which at least one of the

f’
controls remains as bang~bang with one switching point, while
others are generally not of the bang-bang type. This value, t;,
is called the minimum time which is required.

The equations for the system are composed of the Euler

dynamical equations in the spacecraft body axes and the

‘quaternion kinematical equation. By introducing the costates for

the quaternion and the angular velocity, we can form the
Hamiltonian of the system and obtain the optimal controls (with

upper and lower bounds). The necessary conditions for the



optimal control leads to the two point boundary value problem.
Th? associated boundary conditions are::

q(0), w(0), q(te). M(Ff) known

p(0), r(0), p(tg), r(tg) unknown
Thé time tg is also to be determined.

We choose the following procedure to solve our problem:
first, select a fixed value of tf(O), solve the combinational
dynamical equ#tions for the aﬁgular velocities, quaterion
components and costates using & quasilinearization algorithm; if
one of the controls is of a bang-bang type, then stop the compu-
tation. If not, then shorten the tf by a reasonable amount and
start the quasilineatization algorithm again.

Before starting the quasilinearization algorithm, we need to
guess the initial unknown boundary values of the costates p(0),
rfO). Since the quaternion is subject to a counstraint (i.e. its
norm equals to unity), this leads to the norm of the associated
costates being equal to a constant (but not equal to unity).

This extra constant is usually treated as an unknown and is
determined by iteration [3]. This results in more compufational
effort. However, through several steps of reasoning, we can show
that this unknown constant can be easily selected without changes
in the optimal comntrols [8l, Therefore, this property simplifies
the problem and saves coﬁputationcl time.

By means of Euler's eigenaxis rotation theorem, from the
known attitudes at the initial and final time, q(0) and q(tg), we

can find a unit vector (eigenaxis) € which is fixed in both the



body axes and inertial coordinate system, and a rotation angle,

*

8*. Then the attitude changes from q(0) to q(tg) can be realized

by rotating the spacecraft about the axis,g » through the angle,
8*. By properly choosing 8 (t) as a functionm of éime, which
satisfies the boundary conditions 6(0)=0, e(tf)-e*, we obtain a
nominal trajectory of the attitude slewing motion, which will be
used as the starting values of the quasilinearization algorithm.

The starting value tf(O) needs to be made as close to the
minimum time, tz, as possible. This can be dome by using
similiar techniques; Suppose the slewing motion is a rotation
about the vector, e , through an angle, 6(t). Then, we get three
similiar equations.for g(e): .

aj g = bji 62 + cifg i=1,2,3 (4)

e(a) = 0, 0(tg) = o*
where aj,bj,ci atevcoustants, T; is the countrol about the body
axis 7
Tl i=1,2,3 (5)
For each i we have a minimum time control problem; we then get
three minimum time values, t;i, i=1,2,3; then, we can select the
longest of them as our initial guess for tg.

Finally, we apply these methods to the SCOLE slewing
motionlll, Fig. 1 shows the configuration of the SCOLE. Due to
the configuration of the SCOLE, the inertia matrix is not
diagonal. The control variables include three control moments on
the.Shuttle and two control forces on the reflector. We have the

following numerical resulté:



(a) Assuming control torques only on the Shuttle and a

(b)

(ec)

diagonal inertia matrix, slewing the SCOLE about one of
three principal axes through é* = 20 deg, from rest to
rest. The result is exactly the same as described
above, i.e., the concfol torque about the axis is of
a;b;ng-bang type, while the other control components
remain zero.

Uaing~tﬁe same conditions in case (g), except that using

the inertia matrix of the SCOLE (non~-diagonal), the

nominal slewing motiom is about each of the three

spacecraft axes, respectively. Fig. 2 and Fig. 3 give
the control torques of these slewing motions.
Pollowing the case (b), add forces on the reflector,

Fig. 4 and Fig. 5 show these results.
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Conclusions

(1.

(2).

(3).

(4).

There is a good agreement between the initial guessed
value of tgf and the value of tg to which the algorithm
converges in the case (b). |

The guessed value of costates: p(0), r(0) are suffi-
cient to arrive at values of these parameters supplied
by the algorithm.

The methods used in this paper are easily implemented
for practical control sources, which may have more
constraints. For example, in the neighborhood of the
switching point of the bang~bang control, we can
réplace the jump by a linear function of time.

The control profiles obtained in this paper give us

& good reference for future use. For example, an
extension to.:he minimum time slewing motion of the
SCOLE model containing both rigid and flexible com-

ponents is planned.
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Figure 1. Draving of the Shuttle/Antenna Configura:idn: - R
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